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Abstract. We present a comprehensive experimental study of Tan’s universal
contact parameter I in a two-component ultracold Fermi gas, using Bragg
spectroscopy. The contact uniquely parameterizes a number of universal
properties of Fermi gases in the strongly interacting regime. It is linked to the
spin-antiparallel component of the static structure factor S↑↓(k) at high momenta,
which can readily be obtained via Bragg scattering. Contact depends upon the
relative interaction strength 1/(kFa) and temperature T/TF, where kF is the Fermi
wave vector, a is the s-wave scattering length and TF is the Fermi temperature.
We present measurements of both of these dependencies in a cloud of 6Li
atoms and compare our findings to theoretical predictions. We also compare
Bragg spectroscopic methods based on measuring the energy and momentum
transferred to the cloud and examine the conditions under which the energy
transfer method provides improved accuracy. Our measurements of the dynamic
structure factor and contact are found to be in good agreement with theoretical
predictions based on the quantum virial expansion.
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1. Introduction

New insights into strongly interacting Fermi gases have emerged as an important development
leading to new understandings of highly correlated systems of fermions. This universality means
that any dilute Fermi system with sufficiently strong interactions will behave identically on a
scale given by the average particle separation, independent of the details of the short range
interaction. In a two-component Fermi gas, when the range of the scattering potential r0 is much
smaller than the mean interparticle spacing n−1/3 and the s-wave scattering length a, which
characterizes elastic collisions, is large, the system can display universal properties. Ultracold
gases of fermionic atoms near a Feshbach resonance are an excellent system in which to access
the universal regime in a precisely controlled manner [1–3]. With the discovery of universality in
the Bose–Einstein condensate (BEC) to Bardeen–Cooper–Schrieffer (BCS) crossover, ultracold
Fermi gases near Feshbach resonances have become a central topic in atomic physics [4–12].
Similar strongly interacting Fermi systems arise in a wide variety of physical settings, from
astrophysical to nuclear and condensed matter systems. One can therefore study universality in
ultracold atomic gases to help understand other strongly interacting Fermi superfluids, taking
advantage of the ability to precisely control atom–atom interactions.

From a theoretical viewpoint, these strongly interacting Fermi gases can present significant
challenges [13]. As the scattering length becomes large, it can no longer be treated as a small
parameter and perturbative theories, which have had wide success for weakly interacting Bose
gases, typically fail. In 2008, Shina Tan made dramatic progress by deriving several exact
relations valid through the BEC-BCS crossover, which relate the microscopic properties to bulk
thermodynamic quantities through a single parameter, I, known as the contact [14–16]. These
exact relations are applicable in broad circumstances: zero or finite temperatures, superfluid or
normal phases, homogeneous or trapped systems and in few- or many-body systems. Contact is
defined as

I = lim
k→∞

nkk4, (1)

where nk is the momentum distribution of a single-spin component as a function of the wave
vector k. At large k, nk has a 1/k4 dependence, so the contact is a constant that depends on two-
body interactions and quantifies the amplitude of this high momentum tail. A more physically
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intuitive picture of the contact was also given by Tan as the number of closely spaced spin-
up/spin-down pairs, i.e. I quantifies the likelihood of finding two fermions with opposite spin
close enough to interact with each other. In systems with a large scattering length, where the
range of the interaction potentials is negligible, this single parameter encapsulates all of the
information required in order to determine the many-body properties [17, 18]. I depends on
two quantities: the dimensionless interaction parameter 1/(kFa), where kF is the Fermi wave
vector, and the relative temperature of the system T/TF, where TF is the Fermi energy divided
by Boltzmann’s constant. We follow the notation introduced by Tan where I is the integrated
contact density applicable to trapped gases (I =

∫
C(r)d3r , where C(r) is the local contact

density).
Tan showed that the internal energy of a gas across the BEC–BCS crossover can be

expressed as a functional of the momentum distribution at k and that the pair correlation function
diverges as I/r 2 at short distance r < 1/kF [14, 19]. Tan also derived the adiabatic relation
dE/d(−1/a)= h̄2I/(4πm), where m is the atomic mass, yielding the change in total energy E
due to an adiabatic change in the scattering length [15], and extended the virial theorem to finite
a and imbalanced spin populations [16].

Experimentally, the contact I was first extracted [20] from the number of closed-
channel molecules determined through photo-association experiments [8]. More recently, I was
measured both directly from the tail of the momentum distribution and using radio frequency
(rf) spectroscopy by the JILA group [21]. The JILA group also experimentally verified Tan’s
adiabatic and virial relations [21]. Recent work by the ENS group obtained the contact at
unitarity from the measured equation of state of a homogeneous gas [12]. Previous work
in our group at Swinburne pointed out that Tan’s universal relation for the pair-correlation
function could be tested through measurements of the static structure factor S(k) using Bragg
spectroscopy [22].

Here, we show that Bragg spectroscopy can provide a good measure of the interaction
and temperature dependences of the contact across a broad region of the Feshbach resonance.
We also demonstrate a new experimental technique for determining the energy transferred by
a Bragg pulse with good signal-to-noise ratio. Theoretical calculations based on the quantum
virial expansion (QVE) are shown to agree with measurements of the dynamic structure factor
and contact at temperatures down to T & 0.5TF. This paper is organized as follows. In section 2,
we give a detailed overview of how the contact can be measured using Bragg spectroscopy and
the methods we use. In section 3, we present measurements of the interaction dependence of the
contact extracted from our previous work on the static structure factor. In section 4, we report
measurements of the temperature dependence of the contact. We first describe our techniques
for setting and measuring the cloud temperature and then use a new method of energy transfer
Bragg spectroscopy to measure the temperature dependence of the contact and compare these
results to those obtained using traditional momentum transfer Bragg spectroscopy. The Bragg
spectra are found to be in good agreement with QVE calculations for a range of temperatures
and interaction strengths. In section 5, we summarize our findings and provide an outlook for
future investigations.

2. Measuring contact using Bragg spectroscopy

Tan’s exact universal relations, such as the adiabatic and virial theorems mentioned in the
previous section, link many-body quantities such as the total energy and momentum distribution
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to the the two-body scattering length through a single short-range parameter, the contact I.
The short-range structure in a quantum fluid depends upon the relative wave-function of the
interacting particles, in this case fermions in different spin states. In a two-component (spin-
up/spin-down) Fermi gas, this is given by ψ↑↓(r)∝ 1/r − 1/a. Tan used this to show that, for
length scales r0 < r < 1/kF, the spin-antiparallel pair-correlation function is given exactly by
equation (2), which includes the contact as a pre-factor [14],

g(2)
↑↓
(r)=

I
16π 2

(
1

r 2
−

2

ar

)
. (2)

Such pair-correlation functions are difficult to measure directly in ultracold gases; however,
it is possible to measure macroscopic quantities that depend on the correlation functions in a
well-defined way. A prime example is the static structure factor, S(k), which is given by the
Fourier transform of g(2)(r). In a two-component Fermi gas with an equal number of particles
N/2 in each spin state, the structure factor contains two equally weighted contributions arising
from correlations between particles in the same state and between particles in different states
S(k)= S↑↑(k)+ S↑↓(k). When the probe momentum (q = h̄k) is much larger than the Fermi
momentum, particles in the same state will be uncorrelated and S↑↑(k � kF)' 1, so all variation
in S(k) will then be due to changes in S↑↓(k) [9, 19]. The Fourier transform of equation (2)
yields the following universal relation for S↑↓(k),

S↑↓ (k � kF)=

(
I

NkF

)
kF

4k

[
1 −

4

πkFa

(
kF

k

)]
, (3)

which is written in this way to show the explicit dependence on the dimensionless contact
I/(NkF), where N is the total number of particles, k/kF is the relative probe momentum and
1/(kFa) is the interaction strength. At unitarity, a → ∞, the second term in the square brackets
vanishes and S(k) varies linearly with kF/k. Rewriting Tan’s relation in this way points to a
pathway for experimental validation through Bragg spectroscopy [22].

Inelastic scattering experiments are well established as a means to probe both the dynamic
and the static structure factors of many-body quantum systems [23]. The dynamic structure
factor S(k, ω) characterizes the excitation spectrum of a many-body system and depends upon
the particle–particle correlations in the system. Ultracold atoms are highly amenable to inelastic
scattering through Bragg spectroscopy, which has previously been used to measure both the
dynamic and the static structure factors [24–27] of atomic BECs. In ultracold Fermi gases,
Bragg spectroscopy was used to measure both the dynamic and the static structure factors over
the BEC–BCS crossover, albeit at a single momentum [9]. Bragg spectroscopy differs from rf
spectroscopy in that it probes density–density correlations, whereas rf probes the single-particle
spectral function A(k, ω) [28]. Additionally, Bragg spectroscopy avoids complications arising
from final state interaction effects as no third atomic state is involved [29].

The resonant recoil frequency ωr for Bragg scattering is the frequency at which both energy
and momentum are simultaneously conserved in a two-photon scattering event. In the single-
particle regime, this means that the energy difference between the two lasers used in Bragg
scattering must be equal to the kinetic energy of the particle after gaining h̄k of momentum,
where k = |k1 − k2| is the difference in wave vectors of the the two Bragg laser beams. This
leads to the Bragg condition ωr = h̄k2/(2m), where m is the mass of the scattered atoms. Since
the mass of the particle comes into the recoil frequency, Bragg spectroscopy provides a means
of distinguishing molecular dimers (or pairs) from free atoms, leading to a physically intuitive
picture of how Bragg scattering can be used to extract the contact. As I physically represents the
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number of closely spaced pairs, these pairs may scatter from the Bragg lattice as single particles
with mass 2m (twice the atomic mass). Hence they should show up as a peak in the excitation
spectrum at half of the atomic recoil frequency and the size of this peak should be proportional
to the contact. In real trapped systems, these peaks are broadened by a number of mechanisms
and the contact can be obtained by the integrated response through S(k) and equation (3).

The Bragg experiments we consider here are performed in the linear response regime,
where the fraction of particles scattered is small compared with N and the duration of the Bragg
pulse τ is short compared to the two-photon Rabi cycling period. In this limit, the momentum
transferred to the cloud via the Bragg pulse is given by the convolution of the spectral
components of the Bragg pulse with the difference between the positive and negative frequency
dynamic structure factors [9, 30]

1P(k, ω)= h̄k
�2

Br

2

∫
[S(k, ω′)− S(−k,−ω′)].

sin2 [(ω−ω′) τ2 ]

(ω−ω′)2
dω′, (4)

where �Br is the two-photon Rabi frequency. Similarly, the energy transferred to the cloud via
a Bragg pulse is given by

1E(k, ω)=
h̄�2

Br

2

∫
ω′[S(k, ω′)− S(−k,−ω′)].

sin2 [(ω−ω′) τ2 ]

(ω−ω′)2
dω′. (5)

When the Bragg pulse is long, the sine-squared term in the integral becomes narrow compared
with the features in the dynamic structure factor and contributes little to the shape of the
measured spectra. Furthermore, as generally we will be concerned only with the integrals of
Bragg spectra over the frequencyω, and the Bragg pulse duration is the same for all experiments,
this convolution scales all of the measured quantities by the same amount. As this scaling
cancels in our normalization procedure, we can ignore the convolution without affecting our
analysis. Under this assumption, the momentum and energy transferred simplify to

1P(k, ω)= h̄k
�2

Br

2
[S(k, ω)− S(−k,−ω)] (6)

and

1E(k, ω)= h̄ω
�2

Br

2
[S(k, ω)− S(−k,−ω)] , (7)

respectively, i.e. they differ by a factor of ω/k. Both the positive and the negative frequency
structure factors are included here because, particularly at higher temperatures and lower
momenta, atoms may absorb light from either of the Bragg lasers. We can easily account for
this in a way that leaves only the positive component of the dynamic structure factor using the
principle of detailed balancing, which states that in thermal equilibrium,

S(k, ω)− S(−k,−ω)=

[
1 − exp

(
−

h̄ω

kBT

)]
S(k, ω), (8)

where kB is Boltzmann’s constant. With this relation, we can extract the dynamic structure factor
from either the measured momentum or energy transferred to the cloud by the sequence of Bragg
pulses as k, ω and T are all known. Additionally, we can use the f-sum rule to link the area
under the measured spectra to the true dynamic structure factor (section 4) [22]. Once the true
dynamic structure factor is known, we can determine the static structure factor by integration
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over ω,

S(k)=
h̄

N

∫
S(k, ω)dω. (9)

This then allows us to obtain the contact directly through equation (3).
Traditionally, Bragg spectroscopy has been achieved by measuring 1P(k, ω) through

measurements of cloud displacement after a short time of flight. A number of recent studies
on Bose gases in lattices, however, have also made use of energy transfer Bragg spectroscopy
through measurements of the cloud width [31–33]. Recently, we showed that both the first and
the second moments of absorption images of clouds released immediately after the Bragg pulse
can be used to obtain a measure of the dynamic structure factor [34]. In section 4, we compare
these measurements to new determinations of 1E(k, ω) measured from increases in the size
of trapped clouds, after allowing a sufficiently long time for re-equilibration. This method can
offer improved signal-to-noise ratios under certain conditions, particularly at low momentum
transfer [33].

3. Interaction dependence of the contact

The starting point of all of our Bragg experiments is an evaporatively cooled cloud containing
N ≈ 3 × 105 6Li atoms in an equal mixture of the two lowest-lying ground states |F = 1/2,
mF = ±1/2〉 loaded into a far detuned optical dipole trap [35]. The cloud is prepared at a
magnetic field of 834 G, where elastic collisions are unitarity limited by the broad s-wave
Feshbach resonance. Depending on the power and beam waists of the trapping laser, we can
tune the mean harmonic confinement frequency over a large range and we have previously
used this flexibility to study the dependence of S(k) on the ratios k/kF and 1/(kFa) in order to
experimentally verify the universal relation in equation (3) [22]. In that work, we also presented
the static structure factor at k = 4.8kF as a function of 1/(kFa) [9, 22], where we showed
that normalizing the Bragg spectra using the f -sum rule greatly improves the accuracy of the
measured structure factors. Combining these results with equation (3), we obtain the interaction
dependence of the contact, which we present for the first time in figure 1 below, along with
a zero-temperature calculation using a Gaussian pair fluctuation theory based on the many-
body t-matrix approximation [36]. These Bragg spectroscopic measurements were taken using
clouds prepared at a temperature of T . 0.1TF at unitarity, before being adiabatically swept to
the different magnetic fields. The data are in good agreement with previous results [8, 20, 28]
and show a strong increase in the contact on the BEC side of the Feshbach resonance.

The agreement between experiment and theory also suggests that our universal relation
for the structure factor, equation (3), is reliable away from unitarity, up to |1/(kFa)| ∼ 1 at the
momentum considered here (4.8kF). For the largest value of 1/(kFa)= +1.4, the second term
in square brackets of equation (3), which provides the first-order correction to S(k) away from
unitarity, is only 0.37, which is still significantly less than one and higher-order terms will be
smaller again, so equation (3) is still quite reliable in this region. We note that the second term
in brackets in equation (3) does not depend on kF, so its applicability requires that a � k−1.

4. Temperature dependence of the contact

To investigate the temperature dependence of the contact, we load the atoms at unitarity (834 G)
into a deep single beam optical dipole trap so that even the higher temperature clouds will be
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Figure 1. Contact, I/(NkF), as a function of the dimensionless interaction
parameter, 1/(kFa). Data points are obtained from static structure factor
measurements at k = 4.8kF [22] and equation (3). The solid line is a
zero-temperature calculation based on a Gaussian pair fluctuation theory [36].

confined in the harmonic region of the trapping potential. This deep trap also allows us to keep
atoms trapped after the Bragg pulse has been applied as the trap depth U ≈ 90 kHz is much
larger than the recoil energy h̄ωr and the Fermi energy (U ≈ 12EF). This allows us to measure
the energy imparted by the Bragg pulse after a long hold time for re-equilibration, as discussed
in section 4.2. We vary the cloud temperature by suddenly switching off the dipole trap for a
variable time before quickly ramping it on and holding the cloud for 400 ms � 1/ω̄, where
ω̄ = 2π × 71.5 s−1, to re-thermalize [7]. During the release, a magnetic field gradient is applied
that levitates the atoms against gravity and minimizes the centre-of-mass sloshing that would
otherwise occur upon recapture. In this way, we can repeatably heat the cloud to temperatures
of up to T = 1.1 TF without losing atoms.

4.1. Temperature measurement at unitarity

The measurement of temperature in strongly interacting Fermi gases poses significant
challenges to experiments due to the lack of a finite-temperature analytic model for the
density profile [37]. A number of techniques have been developed to obtain temperatures of
spin-balanced Fermi gases, each with its advantages and disadvantages. These include the
determination of an empirical temperature T̃ from fits of an ideal gas Thomas–Fermi profile to
clouds imaged at unitarity [7]; adiabatic magnetic field sweeps to the weakly interacting regimes
where perturbative models are accurate [38, 39]; measurements of the entropy and energy and
the fundamental thermodynamic identity 1/T = ∂S/∂E [40]; and the use of a small admixture
of another weakly interacting species that can act as a thermometer [11, 41]. The latter method
is perhaps most elegant and reliable but requires the simultaneous cooling of a second species
in the apparatus, which can pose difficulties.

We determine the temperature of clouds at unitarity following the techniques developed
in the Duke group [7, 37] by fitting finite-temperature Thomas–Fermi profiles to images of
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Figure 2. 1D line profiles n(y) of clouds prepared at two different temperatures
at unitarity along with finite-temperature Thomas–Fermi fits. The fitted function
is used to extract empirical temperature T̃ , which gives an estimate of the true
temperature shown in the inset in units of the Fermi temperature TF.

clouds after 2 ms expansion to obtain T̃ . The empirical temperature provides a robust, but
model-dependent, estimate of the true temperature T/TF =

√
1 +β T̃ , where β = −0.617 is a

universal parameter [42]. Because of the model dependence, we also calibrate our temperatures
with independent measurements of the mean energy per particle at unitarity. These are compared
to theoretical calculations using a below threshold version of the Nozières–Schmitt–Rink
(NSR) scheme [43], based on a many-body t-matrix approximation, for the equation of state
of harmonically trapped Fermi gases [44]. While this does imply a model dependence, this
NSR theory has been shown to provide excellent agreement with the experimentally measured
equation of state over nearly the full range of temperatures that we study [11, 45] and thus
provides a reliable benchmark for the T̃ measurements.

Figure 2 shows examples of fits of a Thomas–Fermi profile to one-dimensional (1D)
density profiles n(y) of two clouds that yield temperatures of 0.11 TF and 0.58 TF, respectively.
Each profile is obtained from the average of five absorption images taken under identical
conditions. The quality of the fits is very good and the uncertainties in fitted empirical
temperatures are generally at the level of a few per cent. The conversion from the empirical
temperature to the true temperature, however, is subject to systematics (e.g. the density
profile below the critical temperature for superfluidity is not simply a scaled Thomas–Fermi
profile [46]) and as such needs to be calibrated in an independent way. In figure 3, we plot
the measured mean energy per particle as a function of the temperature obtained from the
fitted T̃ and compare these to the calculated mean energy per particle. In a unitary cloud,
the mean energy per particle is directly proportional to the mean square cloud width and
the total energy is shared equally between kinetic and potential energies, independent of the
temperature. The solid line is a calculation based on the NSR theory [3] and the dash-dotted line
is taken from a power-law fit to model-independent temperature measurements obtained from
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Figure 3. Comparison of the measured mean energy per particle at unitarity with
the energy calculated using a NSR theory [3] and the power-law fit to the Duke
results [37]. The position along the horizontal axis of the experimental data is
determined from fits of the empirical temperature T̃ and the energy is obtained
through measurements of the mean-square width of trapped clouds.

the fundamental thermodynamic identity 1/T = ∂S/∂E , where S is the entropy, performed
by the Duke group [37, 40]. Our results lie close to the NSR theory and slightly above the
power-law calibration curve obtained from the Duke experiments. We obtain an estimate of the
uncertainty in our temperature measurement from the mean difference between the temperatures
obtained from the fitted T̃ and the temperature corresponding to a cloud with the same mean
energy per particle.

Temperature measurement away from unitarity is even more difficult in spin balanced
systems, particularly on the BEC side of the Feshbach resonance where models, such as the
NSR, become less reliable. For this reason, we instead use the entropy to parametrize the data.
We obtain the entropy by isentropically sweeping the magnetic field either to the far BCS side,
where 1/(kFa)= −1.5, or to unitarity, where we measure the mean square cloud width, which
we relate to the entropy via the NSR model. At 1/(kFa)= −1.5, the NSR entropy is almost
identical to the entropy of an ideal gas, differing by a maximum of ≈4% for temperatures
below 0.2 TF.

4.2. Bragg spectroscopy: the energy transfer method

Here, we describe the procedure we used for energy transfer Bragg spectroscopy. Bragg
scattering is achieved by illuminating 6Li clouds with two laser beams that have a small tunable
frequency difference ω that intersect at an angle of θ = 49◦. This creates a standing wave that
moves with velocity ω/k, where k = 4π sin (θ/2)/λ and λ= 671 nm is the wavelength of the
light used for Bragg scattering. In combination with the trap parameters and atom numbers we
use, this gives a relative probe momentum of k = 2.7kF, which enhances the contribution of
S↑↓(k) to S(k) according to equation (3). This leads to an atomic recoil frequency of 51.6 kHz.
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Bragg spectroscopic studies typically measure the momentum transferred to a cloud as
the observable through the number of scattered atoms or the centre of mass displacement
[9, 24]. We recently carried out a measurement of the temperature dependence of the
contact [34] using Bragg spectroscopy. In that work, we showed that measuring both the
first 〈x〉 and the second moments 〈x2

〉 of atom clouds after immediate release from the confining
potential can provide quantitative information about the dynamic structure factor. Here, we take
this idea further and determine the energy transferred to the cloud from measurements of the
increase in the mean square cloud width, 1σ 2, once the atoms have re-equilibrated in the trap,
following a long hold time after the Bragg pulse. Due to the high elastic collision rates in
trapped clouds, the energy imparted by the Bragg pulse is rapidly distributed among all of the
atoms through collisions. The Bragg pulse may also induce centre of mass oscillations; however,
after a long hold time in the trap, these oscillations damp out to below our detection limit due
to the slight anharmonicity of our trapping potential. After the oscillations have damped, the
width of the cloud alone provides a measure of the energy imparted. The advantage of this
method over our earlier method is that it does not require a priori knowledge of a reference
centre of mass position. As such, this method is insensitive to small (micron) scale drifts in the
trap position over the time it takes to obtain a Bragg spectrum, which can be a limitation when
measuring cloud displacement. The main weakness of this method is that the cloud width (at
zero temperature) varies as N 1/6. As this is a very weak dependence and typical shot-to-shot
atom number fluctuations can be made relatively small, this does not pose a serious constraint.
At higher temperatures, the N dependence eventually disappears in the classical gas limit.

This technique relies on having a trap deep enough such that no atoms will be lost following
the Bragg pulse. We achieve this using a 1064 nm optical dipole trap operated at 8 W, with
beam waists of 600µm by 170µm. The resulting trap has harmonic confinement frequencies
of (ωx , ωy, ωz)/2π = (24.5, 65, 230) Hz (ω̄ = 71.5 Hz) and a depth of almost twice the atomic
recoil energy. In all of our Bragg spectra, at temperatures of up to 1.1 TF, we can detect no loss
of atoms from the trap after the Bragg pulse.

We obtain spectra by applying a 200µs Bragg pulse and measuring the cloud width after
400 ms hold time in the trap. As this hold time is very long compared to 1/ω̄ and the elastic
collision rate is unitarity limited and hence very large [47], this is ample time for the energy to
distribute itself equally among all available degrees of freedom. This allows us to measure the
increase in cloud width in both the x- and y-directions from a single shot, whereas our previous
Bragg studies, based on momentum transfer, only measured a signal in one dimension. This
hold time is also long enough that we observe no residual centre of mass motion. Additionally,
the measured width increase after a long hold time is independent of the direction of the
Bragg scattering wave vector (k = k1 − k2), removing the constraint of imaging perpendicular
to k.

Absorption images of clouds after the long hold time yield symmetric 2D density profiles
n(x, y). From these we can integrate over either direction to obtain 1D line profiles n(x) and
n(y). To determine the second moments of these, we fit Gaussian profiles to the cloud and
take the second moment of the fitted functions. Analysing the data in this way is much less
sensitive to shot noise in the individual pixels, which was present in our previous work [34].
At low temperatures, however, Gaussian profiles do not provide a particularly good fit to the
cloud shape and, in the worst case, the second moment of the fitted Gaussians can be up to 15%
higher than the true moment extracted from the data points. However, as we are only concerned
with relative increases in the cloud energy rather than the absolute energy, this systematic error
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Figure 4. Bragg spectra for a unitary Fermi gas showing (a) the increase in mean
square cloud size (energy transferred) after 400 ms hold time in the trap and
(b) the centre of mass displacement (momentum transferred) following
immediate release from the trap [34] as a function of the Bragg frequency ω.

provides essentially no contribution to the static structure factors we determine, as discussed
below.

The key to this insensitivity to the shape of the fitted function lies in the fact that we
independently normalize all our measured spectra via the f-sum rule. Thus it is only the relative
nonlinearity, in the second moment of the Gaussian fit as a function of T , compared to the
second moment of the true distribution, that contributes to an error in the measured structure
factors. We estimate this nonlinearity by comparing the temperature derivative of the second
moment of a Gaussian fitted to a finite temperature Thomas–Fermi profile with the temperature
derivative of the second moment of the Thomas–Fermi distribution itself. For the coldest clouds
and the largest energy increases we observe, the nonlinearity leads to an error in the relative
energy increase of ≈3%. This is already smaller than the uncertainty in our measurement of
the relative energy increase and, when propagated through our analysis procedure to determine
the static structure factor and contact, the resulting error is less than 1%, well below other
uncertainties arising from atom number fluctuations and imperfect imaging. The Gaussian fit
therefore provides a simple and robust way to determine the relative increase in cloud energy
and introduces effectively no additional contributions to our overall measurement uncertainty.

Figure 4(a) (solid lines) shows Bragg spectra of unitary clouds obtained from
measurements of the energy transferred at the five temperatures listed in the legend. These
spectra are the average of the relative increase in width in both the x- and y-directions, averaged
for four spectra. These spectra appear quite different in shape to traditional spectra based
on measurements of the momentum transferred (also the average of four spectra) shown in
figure 4(b) [9, 34], as the energy spectra represent the dynamic structure factor multiplied by
the energy h̄ω. The raw data in figure 4(b) display considerably less scatter than the second
moment data of our previous measurements [34].

As discussed in section 2, both types of Bragg spectra can provide quantitative information
about the dynamic and static structure factors and hence the contact. Figures 4(a) and (b) also
show fits to the measured spectra (dashed lines) that we use for further evaluation. For the
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energy spectra in figure 4(a), the fitted function is of the form

FE(ω)= ω · (1 − e−h̄ω/kBT ) · [cae−[(ω−ωa)
2]/2σ 2

a + cbe−[(ω−ωb)
2]/2σ 2

b ]. (10)

The first term in brackets accounts for detailed balancing, and the two Gaussian functions in
square brackets represent the dynamic structure factor S(k, ω). The first Gaussian is centred
on ωa ≈ ωr/2 to account for pair excitations and the second is centred on ωb ≈ ωr for atomic
excitations. The amplitudes ca,b, widths σa,b and centre positions ωa,b of the two Gaussians are
used as fit parameters. For the momentum spectra shown in figure 4(b), we fit an almost identical
function FP(ω), which does not have the pre-factor of ω, i.e. FP(ω)≡ FE(ω)/ω.

These fitted functions provide information about the relative response at both pair and
atomic excitation frequencies. To establish the absolute amplitudes, we require that the fitted
Gaussians satisfy the f-sum rule [23] such that

h̄
∫
ω · [c′

ae−(ω−ωa)
2/2σ 2

a + c′

be−(ω−ωb)
2/2σ 2

b ]dω = Nωr . (11)

The new coefficients c′

a and c′

b are just the original coefficients scaled by the same factor
to satisfy equation (11). With these new coefficients, the two Gaussians provide a good
representation of the dynamic structure factor [34, 48] that can be integrated to obtain S(k)
and hence the contact.

We have also obtained Bragg spectra using energy transfer measurements at magnetic fields
of 780 G, 1/(kFa)= 1.1 and 860 G, 1/(kFa)= −0.4 on the BEC and BCS sides of the Feshbach
resonance, respectively. The same fitting procedure described above gives the dynamic structure
factors, which are plotted for all three cases in figures 5(a)–(c) for the unitary, BCS and BEC
cases, respectively. These spectra were obtained at a range of different cloud temperatures;
however, due to the difficulty in quantifying temperatures on the BEC side of the resonance, we
instead distinguish the spectra by the cloud entropy S. For spectra on the BCS side, this was
determined by isentropically sweeping the magnetic field to 1/(kFa)= −1.5 and measuring
the cloud (mean square) size relative to the Fermi radius. We convert the size to entropy using
an NSR calibration curve for 1/(kFa)= −1.5. At unitarity, we apply the same procedure with
an NSR calibration curve at 1/(kFa)= 0 to obtain the entropy. The entropy for clouds on the
BEC side is obtained after isentropically sweeping the magnetic field to unitarity and using the
unitarity calibration. The uncertainties in our temperature measurement and entropy calibration
procedure lead to uncertainties in the quoted entropies of approximately 7%.

The dashed lines in figure 5 are the Gaussian fits for S(k, ω) and the solid lines are
calculations based on the QVE to second order [49]. The virial expansion is only strictly reliable
when the fugacity is a small parameter that corresponds to temperatures T & TF; however, it
qualitatively captures the main features of S(k, ω) down to T ∼ 0.5 TF, or S ∼ 3.6(NkB) at
unitarity. In figure 5(a), we plot the unitary dynamic structure factors obtained from averaging
the data of figure 4. The inset shows a comparison of the three highest temperature spectra with
the QVE calculations, which display very good agreement. On the BEC side of the Feshbach
resonance, figure 5(b), we show four dynamic structure factors measured at relatively low
entropy. Only the Gaussian fits for the structure factors are plotted as the cloud temperatures
were too low for quantitative comparisons with the QVE. Also, for the lowest temperatures,
the Gaussian fit for the molecular peak at ωr/2 becomes a poor approximation. On the BCS
side, figure 5(c), the Gaussian fits are plotted with the two coldest (lowest entropies) spectra and
the QVE is plotted for the two hottest (highest entropies) spectra. The QVE shows very good
quantitative agreement with the data.
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Figure 5. S(k, ω) from selected Bragg spectra at different interaction strengths
and entropies. Data points are the filled circles and the solid (dashed) lines are
the results of QVE calculations (Gaussian fits) for the dynamic structure factor.
(a) S(k, ω) at unitarity for a range of entropies with the Gaussian fits to the
data. Inset: S(k, ω) for the three highest entropies along with QVE calculations.
(b) Data and Gaussian fits to S(k, ω) at 1/(kFa)= + 1.1. (c) Data, Gaussian fits
and QVE results for S(k, ω) at 1/(kFa)= − 0.4.

With these dynamic structure factors, we can determine the static structure factors and
contact according to equation (3), which are plotted in figure 6. The static structure factors
shown in figure 6(a) decay as the entropy (temperature) increases, in reasonable agreement
with the QVE theory. The BEC data appear to lie consistently above the theoretical predictions,
most likely due to the inaccuracy in approximating the molecular peak of the dynamic structure
factor by a Gaussian [48]. Equation (3) also provides the contact shown versus the entropy
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Figure 6. Measured and calculated static structure factor (a) and contact (b)
versus entropy at 1/(kFa)= +1.1 (blue squares), 0 (black circles and triangles)
and −0.4 (red diamonds). The points are the experimental data and the solid lines
are calculations based on the QVE. At unitarity, the circles are data obtained
from energy transfer measurements only and the triangles are from our earlier
work [34]. The dashed black line and zero-temperature contacts (stars) shown in
(b) are obtained from a NSR calculation [36].

in figure 4(b) along with the virial calculations and the NSR theory (green) at unitarity. The
main plot shows the contact obtained from the unitarity and BCS spectra, both of which agree
well with the QVE calculations (black and red) at higher entropies above 3.6 S/(NkB). At
unitarity, the NSR calculation provides the contact at low entropies and we find good agreement
between the data and predicted values. Also shown in figure 6(b) are our earlier contact data,
obtained from the first and second moments after immediate release (triangles) [34], where the
temperature has been converted into entropy using the NSR calibration. The inset depicts just
the contact on the BEC side and the stars indicate the calculated zero-temperature values of the
contact.

It is interesting to compare the two Bragg spectroscopic methods for measuring the contact
at unitarity. The circles in Figure 6 are data obtained from measurements of the energy transfer
alone and the triangles are our earlier data of the first and second moments a short time after
the Bragg pulse [34]. Both methods provide very similar results with comparable error bars and
show the monotonic decay of I/(NkF) with increasing temperature, in good agreement with
theory. Despite the less noisy appearance of the spectra obtained through energy transfer Bragg
spectra in figure 4(a), the resulting error bars for the measured contact are similar to those of our
earlier data. The error bars for both sets of data are the standard deviations of the static structure
factor and contact from the individual spectra. The reason for the comparable uncertainties in
the energy-transfer-based contact measurements is still under investigation, but is most likely
due to excessive atom number fluctuations in some of the individual spectra, combined with the
fact that these spectra are divided by ω, which increases the noise at low frequencies relative to
momentum transfer spectra.
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The measured contact on the BCS side is in reasonable agreement with the theoretical
predictions, as expected from the agreement seen in the dynamic structure factors, figure 5(c).
On the BEC side, the measurements are above the theoretical predictions; however, uncertainties
in the data are large as the spectra are dominated by the pairing peak, which we approximate
with a Gaussian. It is also possible that the universal relation equation (3) at this relatively low
momentum of 2.7 kF is beginning to break down at 1/(kFa)= +1.1. The second term in brackets
in equation (3) here approaches 0.5, which indicates that higher-order terms may start to become
significant.

As discussed in our earlier work, theoretical calculations of the contact at unitarity have
each predicted different behaviours near the critical temperature for superfluidity Tc ≈ 0.2 TF

(S/Nk B ≈ 2) [36, 50, 51]. Unfortunately, with the uncertainties in our measurements, we cannot
identify one theory as being more accurate than another. However, it appears that the energy-
based contact measurements are slightly lower near Tc. With improvements to the atom number
reproducibility, and a closer study of the critical region near Tc, we are optimistic that the energy
transfer method of Bragg spectroscopy will provide the improved accuracy required to resolve
the discrepancies between different theories.

It is interesting to note that I is significant for temperatures well above Tc on both sides of
the Feshbach resonance and that pair correlations build up steadily below TF. At the momentum
we have studied (2.7h̄kF), the 1/k4 momentum tail, at the heart of the contact, dominates the
pair-correlation function. The relationship between these short-range correlations and medium-
range correlations on the many-body length scale (∼ k−1

F ) is still unclear but is the subject of
ongoing research [50]. Measurements of the pair size in a unitary Fermi gas [29] suggest that
this is the important scale to probe for the existence of a pseudogap phase and preformed
pairs that form above Tc [53]. Bragg spectroscopy with lower momentum transfer will be
able to probe pairing in this region, but becomes more complicated as the assumption
of scattering into unoccupied states, which allowed us to approximate the spin-parallel
component of the static structure factor as 1, is no longer valid and S↑↑(k) < 1. However,
additional Bragg measurements that probe the magnetic structure factor SM(k)= S↑↑(k)−
S↑↓(k), in combination with measurements of S(k)= S↑↑(k)+ S↑↓(k), could provide a means
of unambiguously determining both the spin-parallel and spin-antiparallel components [19,
52]. This would allow us to measure spin anti-parallel correlations and probe pairing in the
pseudogap region [53]. Energy transfer Bragg spectroscopy may prove to be valuable at these
lower momenta [33].

5. Conclusions

We have presented a study of the interaction and temperature dependence of Tan’s universal
contact in strongly interacting Fermi gases using Bragg spectroscopy. We have described our
procedures for preparing ultracold 6Li gases at a range of temperatures and for obtaining
quantitative measures of the contact from Bragg spectra. Our results indicate that the high
momentum tail of the pair-correlation function is significant at temperatures well above Tc,
in good agreement with theoretical predictions. The QVE was seen to provide an accurate
determination of the dynamic structure factor and contact at temperatures T & 0.5TF. More
extensive studies of the region near Tc are needed in order to resolve the discrepancies between
different theoretical approaches, and the methods we have shown here may have the capability
of achieving that in the near future. Bragg experiments at lower momentum (k ∼ kF) represent
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an emerging direction that will enable us to probe the regime where pseudogap behaviour has
been observed but is still the subject of active research [11, 50, 53].

Acknowledgment

This work was supported by the Australian Research Council Centre of Excellence for
Quantum-Atom Optics.

References

[1] Heiselberg H 2001 Phys. Rev. A 63 043606
[2] Ho T-L 2004 Phys. Rev. Lett. 92 090402
[3] Hu H, Drummond P D and Liu X-J 2007 Nat. Phys. 3 469
[4] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker-Denschlag J and Grimm R 2003

Science 302 2101
[5] Greiner M, Regal C A and Jin D S 2003 Nature 426 537
[6] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature 435 1047
[7] Kinast J, Turlapov A, Thomas J E, Chen Q, Stajic J and Levin K 2005 Science 307 1296
[8] Partridge G B, Strecker K E, Kamar R I, Jack M W and Hulet R G 2005 Phys. Rev. Lett. 95 020404
[9] Veeravalli G, Kuhnle E D, Dyke P and Vale C J 2008 Phys. Rev. Lett. 101 250403

[10] Horikoshi M, Nakajima S, Ueda M and Mukaiyama T 2010 Science 327 729
[11] Nascimbène S, Navon N, Jiang K J, Chevy F and Salomon C 2010 Nature 463 1067
[12] Navon N, Nascimbène S, Chevy F and Salomon C 2010 Science 328 729
[13] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[14] Tan S 2008 Ann. Phys. 323 2952
[15] Tan S 2008 Ann. Phys. 323 2971
[16] Tan S 2008 Ann. Phys. 323 2987
[17] Braaten E and Platter L 2008 Phys. Rev. Lett. 100 205301
[18] Zhang S and Leggett A J 2009 Phys. Rev. A 79 023601
[19] Combescot R, Giorgini S and Stringari S 2006 Europhys. Lett. 75 695
[20] Werner F, Tarruell L and Castin Y 2009 Eur. J. Phys. B 68 401
[21] Stewart J T, Gaebler J P, Drake T E and Jin D S 2010 Phys. Rev. Lett. 104 235301
[22] Kuhnle E D, Hu H, Liu X-J, Dyke P, Mark M, Drummond P D, Hannaford P and Vale C J 2010 Phys. Rev.

Lett. 105 070402
[23] Pines D and Nozières P 1966 The Theory of Quantum Liquids vol 1 (New York: Benjamin)
[24] Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett.

82 4569
[25] Stamper-Kurn D M, Chikkatur A P, Goerlitz A, Inouye S, Gupta S, Pritchard D E and Ketterle W 1999 Phys.

Rev. Lett. 83 2876
[26] Zambelli F, Pitaevskii L P, Stamper-Kurn D M and Stringari S 2000 Phys. Rev. A 61 063608
[27] Steinhauer J, Ozeri R, Katz N and Davidson N 2002 Phys. Rev. Lett. 88 120407
[28] Stewart J T, Gaebler J P and Jin D S 2008 Nature 454 744
[29] Schunck C H, Shin Y, Schirotzek A and Ketterle W 2008 Nature 454 739
[30] Brunello A, Dalfovo F, Pitaevskii L, Stringari S and Zambelli F 2001 Phys. Rev. A 64 063614
[31] Clément D, Fabbri N, Fallini L, Fort C and Inguscio M 2009 Phys. Rev. Lett. 102 155301
[32] Clément D, Fabbri N, Fallini L, Fort C and Inguscio M 2009 New J. Phys. 11 103030
[33] Ernst P T, Götze A, Krauser J S, Pyka K, Lühmann D-S, Pfannkuche D and Sengstock K 2009 Nat. Phys.

6 56

New Journal of Physics 13 (2011) 055010 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevA.63.043606
http://dx.doi.org/10.1103/PhysRevLett.92.090402
http://dx.doi.org/10.1038/nphys598
http://dx.doi.org/10.1126/science.1093280
http://dx.doi.org/10.1038/nature02199
http://dx.doi.org/10.1038/nature03858
http://dx.doi.org/10.1126/science.1109220
http://dx.doi.org/10.1103/PhysRevLett.95.020404
http://dx.doi.org/10.1103/PhysRevLett.101.250403
http://dx.doi.org/10.1126/science.1183012
http://dx.doi.org/10.1038/nature08814
http://dx.doi.org/10.1126/science.1187582
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1016/j.aop.2008.03.004
http://dx.doi.org/10.1016/j.aop.2008.03.005
http://dx.doi.org/10.1016/j.aop.2008.03.003
http://dx.doi.org/10.1103/PhysRevLett.100.205301
http://dx.doi.org/10.1103/PhysRevA.79.023601
http://dx.doi.org/10.1209/epl/i2006-10165-x
http://dx.doi.org/10.1140/epjb/e2009-00040-8
http://dx.doi.org/10.1103/PhysRevLett.104.235301
http://dx.doi.org/10.1103/PhysRevLett.105.070402
http://dx.doi.org/10.1103/PhysRevLett.82.4569
http://dx.doi.org/10.1103/PhysRevLett.83.2876
http://dx.doi.org/10.1103/PhysRevA.61.063608
http://dx.doi.org/10.1103/PhysRevLett.88.120407
http://dx.doi.org/10.1038/nature07172
http://dx.doi.org/10.1038/nature07176
http://dx.doi.org/10.1103/PhysRevA.64.063614
http://dx.doi.org/10.1103/PhysRevLett.102.155301
http://dx.doi.org/10.1088/1367-2630/11/10/103030
http://dx.doi.org/10.1038/nphys1476
http://www.njp.org/


17

[34] Kuhnle E D, Hoinka S, Dyke P, Hu H, Hannaford P and Vale C J 2011 Phys. Rev. Lett. 106 170402
[35] Fuchs J, Duffy G J, Veeravalli G, Dyke P, Bartenstein M, Vale C J, Hannaford P and Rowlands W J 2007

J. Phys. B: At. Mol. Opt. Phys. 40 4109
[36] Hu H, Liu X-J and Drummond P D 2011 New J. Phys. 13 0035007
[37] Luo L and Thomas J E 2009 J. Low Temp. Phys. 154 1
[38] Carr L D, Shlyapnikov G V and Castin Y 2004 Phys. Rev. Lett. 92 150404
[39] Hu H, Liu X-J and Drummond P D 2006 Phys. Rev. A 73 023617
[40] Luo L, Clancy B, Joseph J, Kinast J and Thomas J E 2007 Phys. Rev. Lett. 98 080402
[41] Spiegelhalder F M, Trenkwalder A, Naik D, Hendl G, Schreck F and Grimm R 2009 Phys. Rev. Lett.

103 223203
[42] Gandolfi S, Schmidt K E and Carlson J 2011 Phys. Rev. A 83 041601
[43] Nozières P and Schmitt-Rink S 1985 J. Low Temp. Phys. 59 195
[44] Hu H, Liu X-J and Drummond P D 2006 Europhys. Lett. 74 574
[45] Hu H, Liu X-J and Drummond P D 2010 New J. Phys. 12 063038
[46] Ketterle W and Zwierlein M W 2008 Ultracold Fermi Gases, Proc. Int. School Phys.‘Enrico Fermi’, Course

CLXIV, Varenna ed M Inguscio, W Ketterle and C Salomon (Amsterdam: IOS Press) p 95
[47] Gehm M E, Hemmer S L, O’Hara K M and Thomas J E 2003 Phys. Rev. A 68 011603
[48] Zou P, Kuhnle E D, Vale C J and Hu H 2010 Phys. Rev. A 82 061605
[49] Hu H, Liu X-J and Drummond P D 2010 Phys. Rev. A 81 033630
[50] Palestini F, Perali A, Pieri P and Strinati G C 2010 Phys. Rev. A 82 021605
[51] Enss T, Haussmann R and Zwerger W 2011 Ann. Phys. 326 770
[52] Guo H, Chien C-C and Levin K 2010 Phys. Rev. Lett. 105 120401
[53] Gaebler J P, Stewart J T, Drake T E, Jin D S, Perali A, Pieri P and Strinati G C 2010 Nat. Phys. 6 569

New Journal of Physics 13 (2011) 055010 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.106.170402
http://dx.doi.org/10.1088/0953-4075/40/20/011
http://dx.doi.org/10.1088/1367-2630/13/3/035007
http://dx.doi.org/10.1007/s10909-008-9850-2
http://dx.doi.org/10.1103/PhysRevLett.92.150404
http://dx.doi.org/10.1103/PhysRevA.73.023617
http://dx.doi.org/10.1103/PhysRevLett.98.080402
http://dx.doi.org/10.1103/PhysRevLett.103.223203
http://dx.doi.org/10.1103/PhysRevA.83.041601
http://dx.doi.org/10.1007/BF00683774
http://dx.doi.org/10.1209/epl/i2006-10023-y
http://dx.doi.org/10.1088/1367-2630/12/6/063038
http://dx.doi.org/10.1103/PhysRevA.68.011603
http://dx.doi.org/10.1103/PhysRevA.82.061605
http://dx.doi.org/10.1103/PhysRevA.81.033630
http://dx.doi.org/10.1103/PhysRevA.82.021605
http://dx.doi.org/10.1016/j.aop.2010.10.002
http://dx.doi.org/10.1103/PhysRevLett.105.120401
http://dx.doi.org/10.1038/nphys1709
http://www.njp.org/

	1. Introduction
	2. Measuring contact using Bragg spectroscopy
	3. Interaction dependence of the contact
	4. Temperature dependence of the contact
	4.1. Temperature measurement at unitarity
	4.2. Bragg spectroscopy: the energy transfer method

	5. Conclusions
	Acknowledgment
	References

